RUS  ENG
Full version
JOURNALS // Journal of Siberian Federal University. Mathematics & Physics // Archive

J. Sib. Fed. Univ. Math. Phys., 2022 Volume 15, Issue 2, Pages 226–235 (Mi jsfu991)

A note on explicit formulas for Bernoulli polynomials

Laala Khaldiab, Farid Bencherifc, Abdallah Derbalb

a University of Bouira, Bouira, Algeria
b EDPNL&HM Laboratory, ENS, Kouba, Algeria
c Faculty of Mathematics, USTHB, LA3C, Algiers, Algeria

Abstract: For $r\in\left \{1,-1,\frac{1}{2}\right\}$, we prove several explicit formulas for the $n$-th Bernoulli polynomial $B_{n}\left(x \right)$, in which $B_{n}\left(x\right)$ is equal to a linear combination of the polynomials $x^{n}$, $\left(x+r\right)^{n},\ldots,$ $\left(x+rm\right)^{n}$, where $m$ is any fixed positive integer greater than or equal to $n$.

Keywords: Appell polynomial, Bernoulli polynomial, binomial coefficients, combinatorial identities.

UDC: 512.6

Received: 17.04.2021
Received in revised form: 11.10.2021
Accepted: 10.01.2022

Language: English

DOI: 10.17516/1997-1397-2022-15-2-226-235



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024