The topography of surface and light transmission by quartz windows after exposure in a high-frequency discharge in deuterium and mixture of deuterium with nitrogen
Abstract:
The effect of a high-frequency discharge on the change in the topography of the surface of KU-1 optical quartz and transmission of visible light (400–1000 nm) is studied. The working gases of the discharge are D$_2$ and a D$_2$/N$_2$ mixture, in which the fraction of N$_2$ is 25 mol.%. The addition of nitrogen increases the rate of sputtering from 60 to 300 nm/h without changing the stoichiometry of the surface layers. After the exposure in plasma, the root-mean-square roughness of the surface decreases from 1.3 to 0.6 nm. The transparence of quartz remains unchanged. The analysis of the roughness and calculation of the diffuse light scattering with a wavelength of 400 nm after passing through quartz are executed using the power spectral density functions.