Abstract:
The thermal conductivity component associated with lattice vibrations is one of the quantities determining the thermoelectric activity of a material. We have simulated the dependences of phase composition and the phonon component of the thermal conductivity associated with it on the shape of nanoparticles of a Bi–Sb alloy with an equiatomic composition and with core–shell configuration. The shape of a particle is simulated by a coefficient corresponding to the extent of deviation of the particle shape from spherical or by its fractal dimension. It is shown that mutual solubilities of components depend on the nanoparticle shape and on the mutual arrangement of coexisting phases, and the thermodynamic equilibrium position for particles with complex morphology corresponds to the homogeneous state. Homogenization of a nanoparticle reduces the phonon component of its thermal conductivity by 70–80%.