RUS  ENG
Full version
JOURNALS // Zhurnal Tekhnicheskoi Fiziki // Archive

Zhurnal Tekhnicheskoi Fiziki, 2019 Volume 89, Issue 2, Pages 297–301 (Mi jtf5704)

This article is cited in 4 papers

Radiophysics

Nonlinear damping and nonlinear phase shift of intense spin waves in screened ferrite films

A. E. Kozinab, A. B. Ustinova

a Saint Petersburg Electrotechnical University "LETI"
b OOO Magneton, St. Petersburg, Russia

Abstract: We analyze for the first time nonlinear damping and nonlinear phase shift of intense surface spin waves in screened yttrium–iron garnet films. Nonlinear damping coefficients are determined using the phenomenological model of spin wave propagation in such films. It is found that nonlinear phase shift in screened films is a weak effect as compared with free films and amounts to tens of degrees. At the same time, nonlinear damping in screened films is comparable with the corresponding value for free films. It is shown that for micrometer-thick films, the losses introduced upon an increase of power to 15 dBm become larger by 2–5 dB.

Received: 25.04.2018

DOI: 10.21883/JTF.2019.02.47085.164-18


 English version:
Technical Physics, 2019, 64:2, 265–269

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025