Abstract:
Various types of plastic instabilities that emerge in intermittent creep have been studied experimentally for AlMg6 aluminum–magnesium alloy. It has been shown that intermittent creep exhibits threshold dynamics. The deformation step on the creep curve of amplitude is $\sim$1–6% and begins when the rate of the preceding continuous creep attains a certain critical value. In the course of evolution of the step, the strain rate varies in the interval that spans more than two orders of magnitude, and transitions occur between different dynamic regimes of type A and B characterized by different stress drop regularity levels in the force response. Nonlinear aspects of the deformation behavior of the alloy in the intermittent creep conditions are considered.