Abstract:
The results of new studies on the production of accelerated deuteron fluxes in a small ion diode with pulsed magnetic insulation of electrons have been presented. A plasma anode of the diode has been formed under the action of a 1.06 $\mu$m laser radiation with a pulse duration of 10 ns, a pulse energy of up to 1 J, and a power density on the target of 5 $\times$ 10$^{15}$ W m$^{-2}$. An accelerating voltage of up to 300 kV has been created using an Arkad'ev–Marx pulsed voltage generator with a stored energy of 50 J and a repetition rate of 1 Hz. A magnetic field of higher than 0.6 T for insulating electrons has been formed by a current pulse of the first cascade of the generator in a spiral line before a conical cascade. Stable deuteron acceleration to 300 keV with a current of up to 1.5 kA and a pulse duration of 0.3 $\mu$s has been achieved.