RUS  ENG
Full version
JOURNALS // Zhurnal Tekhnicheskoi Fiziki // Archive

Zhurnal Tekhnicheskoi Fiziki, 2017 Volume 87, Issue 5, Pages 776–779 (Mi jtf6244)

This article is cited in 1 paper

Physical electronics

Effect of bias voltage and nitrogen pressure on the structure and properties of vacuum-arc (Ěî+Ti6%Si)N coatings

V. M. Beresnev, O. V. Sobol', S. V. Litovchenko, A. D. Pogrebnyak, P. A. Srebnyuk, V. Novikov, D. A. Kolesnikov, A. A. Meilekhov, A. A. Postel'nik, U. S. Nemchenko

V. N. Karazin Kharkiv National University

Abstract: Effect of deposition conditions in reactive nitrogen atmosphere on the growth morphology, phase composition, structure, and mechanical characteristics (microhardness) of vacuum-arc multilayer coatings obtained using evaporation of the (Ti6%Si) and Mo cathodes is studied with the aid of raster electron microscopy, energy-dispersive elemental microanalysis, and microindentation. It is demonstrated that nitrogen atoms are redistributed to the region of the strongest nitride-forming element (Ti) in relatively thin layers (about 7 nm) consisting of substances with substantially different heats of formation (–336 kJ/mol for TiN and –34 kJ/mol for MoN). Such a process leads to lamination with the formation of nitride TiN and metal Mo (weaker nitride-forming element). Nitrogen–metal bonds are saturated in the layers of strong nitrideforming elements Ti(Si) when the nitrogen pressure increases from 6 $\times$ 10$^{-4}$ to 5 $\times$ 10$^{-3}$ Torr in the condensation procedure. Thus, the compound is filled with nitrogen to the stoichiometric composition and, then, the second system of layers based on molybdenum is saturated with nitrogen with the formation of the $\gamma$-Mo$_2$N phase. An increase in bias potential $U_{\operatorname{SP}}$ from–100 to–200 V stimulates mixing in thin layers with the formation of the (Ti, Si, Mo)N solid solution and leads to a decrease in microhardness from 37 to 32 GPa.

Received: 06.09.2016

DOI: 10.21883/JTF.2017.05.44455.2030


 English version:
Technical Physics, 2017, 62:5, 795–798

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024