Abstract:
Computer simulation is used to study electron-optical properties of a cylindrical mirror analyzer with the input of charged particles through the end-surface diaphragm. Regimes with double crossing of the optical axis (two-stage analyzer) are considered to increase the linear dispersion. The external electrode of the electron-optical system under study can be divided into several insulated parts with independently controlled potentials. Such an approach allows the second-order tuning of focusing and wide-range variation in the dispersion. Optimal working regimes make it possible to increase the linear dispersion by a factor of 3–4 in comparison with the one-stage regime.