RUS  ENG
Full version
JOURNALS // Zhurnal Tekhnicheskoi Fiziki // Archive

Zhurnal Tekhnicheskoi Fiziki, 2024 Volume 94, Issue 3, Pages 466–473 (Mi jtf6738)

XI International Symposium ''Optics and Biophotonics'' (Saratov Fall Meeting 2023), Saratov, 25-29 September 2023
Photonics

Terahertz waves generation in the cavity contains asymmetrical hyperbolic memamaterial

O. N. Kozinaa, L. A. Melnikovb

a Saratov Branch, Kotel'nikov Institute of Radio-Engineering and Electronics, Russian Academy of Sciences, 410019 Saratov, Russia
b Yuri Gagarin State Technical University of Saratov, 410054 Saratov, Russia

Abstract: Theoretical investigation of the terahertz waves propagation and generation in the cavity containing asymmetric hyperbolic metamaterial. The metamaterial under investigation is a nanoscale structure composed of periodically arranged layers of a semiconductor and inverted graphene. The aim of investigation is development of the component base for creating devices for terahertz generation and manipulation. The radiation characteristics in the cavity have been investigated by the transfer matrix method. The transformation of the electromagnetic field in a hyperbolic metamaterial, which is an anisotropic media, is described by Berreman matrix. A hyperbolic metamaterial is considered as a homogeneous medium with effective parameters due to the smallness of its period. Homogenization was carried out using the Maxwell–Garnett method. The conditions for efficient THz generation and the frequency range for THz generation are determined. The range of deviations of the tilt angle values of the optical axis of hyperbolic metamaterial for which the generation condition is satisfied and the effect of this angle variations on the generation frequency are determined. An estimation of the maximum allowable values of the asymmetrical hyperbolic metamaterial period have done. The saturation intensity of graphene amplification and the expected THz radiation field strength are calculated.

Keywords: graphene, nanostructure, frequency of generation, saturation.

Received: 22.01.2024
Revised: 22.01.2024
Accepted: 22.01.2024

DOI: 10.61011/JTF.2024.03.57386.14-24



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025