Abstract:
A physico-mathematical model is proposed for assessing the effect of centrifugal force on the characteristic dimensions of needle-shaped ice formed as a result of the collision of a large supercooled drop with a sphere rotating in a coaxial air flow. The mass loss of droplets upon collision with the surface due to splashing is taken into account. The numerical implementation of the model makes it possible to study the effect of surface properties on the icing process and, in particular, to estimate the ice-free surface area due to centrifugal force.