RUS  ENG
Full version
JOURNALS // Zhurnal Tekhnicheskoi Fiziki // Archive

Zhurnal Tekhnicheskoi Fiziki, 2022 Volume 92, Issue 4, Pages 596–603 (Mi jtf7332)

This article is cited in 1 paper

Solid-State Electronics

CVD-synthesis of detector quality diamond for radiation hardness detectors of ionizing radiation

A. V. Krasilnikova, N. B. Rodionova, A. P. Bol'shakovb, V. G. Ral'chenkob, S. K. Vartapetovc, Yu. E. Sizovc, S. A. Meshchaninova, A. G. Trapeznikova, V. P. Rodionovaa, V. N. Amosova, R. A. Khmelnitskiia, A. N. Kirichenkoa

a Institution "Project Center ITER", Moscow , Russia
b Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
c Optosystems Ltd., Troitsk, Moscow, Russia

Abstract: An advanced microwave plasma reactor ARDIS 300 was used to synthesize homoepitaxial structures of monocrystal diamond films at Project Center ITER. High-quality epitaxial diamond films were grown on boron-doped monocrystal diamond substrates using microwave plasma-assisted chemical vapor deposition from methane-hydrogen mixture. Structural and impurity perfection of diamond films were characterized by Raman spectroscopy, photoluminescence, and optical absorption. Prototypes of radiation detectors were created on the basis of grown diamond films with thickness 70–80 $\mu$m. The $p$-type substrate with boron concentration $\sim$100 ppm served as an electrical contact. Detectors were irradiated by 5.5 MeV particles and 14.7 MeV neutrons, corresponding pulse height spectra were measured and detector sensitivities were determined. Charge collection efficiency for synthesized diamond was shown to achieve 94% and 91% when $\sim$4 V/$\mu$m electric field applied.

Keywords: diamond films, epitaxy, diamond detector.

Received: 30.07.2021
Revised: 21.01.2022
Accepted: 21.01.2022

DOI: 10.21883/JTF.2022.04.52247.226-21



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025