Abstract:
The shock compression of a heterogeneous material is numerically simulated. The physical model used for the simulation is based on a layered model of a porous material and consists of a set of thin matrix plates with a known equation of state that are separated by filler layers also with a known equation of state. The model is intended to calculate the parameters (pressure, temperature, mass velocity) of shock compression of the matrix and the filler of heterogeneous materials during their one-dimensional shock compression in terms of a developed hydrodynamic code. The adequacy of the proposed model is tested on porous molybdenum during shock-wave loading to a pressure of 15–70 GPa and a temperature of 4000 K.