Abstract:
We consider the dynamics of evaporation of a thin layer of a polar liquid (e.g., water) with the free surface, which is located on a solid substrate. Thermocapillary instability takes place at the liquid-vapor free boundary. The surface energy of the substrate-liquid contact region is a nonmonotonic function and is the sum of the interactions of the Van der Waals force and the force of the double electric layer. The influence of the Marangoni effect on the velocity, profile, and stability of the liquid evaporation front is analyzed.