Abstract:
The dependences of the electron beam intensity and X-ray dose on the thickness of metal foils (Al, Cu) in a nanosecond discharge initiated in atmospheric-pressure air are studied theoretically and experimentally. Calculated curves of electron beam attenuation in aluminum and X-ray dose attenuation in copper agree well with experimental data. It is found that the amplitude of a super-short avalanche electron beam and the X-ray exposure dose reach maximal values at different values of the interelectrode gap. When the length of the cathode’s edge with a small radius of curvature increases, an interelectrode gap maximizing the amplitude of the runaway electron current shrinks.