Abstract:
The effect of low-temperature annealing on the structure, kinetics of martensitic transformations, and functional properties of an equiatomic TiNi shape memory alloy is studied. Low-temperature annealing of the TiNi alloy is shown to decrease the temperature of the end of the forward martensite transformation M$_f$ and the temperature of the onset of the reverse transformation A$_s$ , which increases the transformation temperature range. As a result, the shape memory effect is improved due to a decrease in the irreversible strain. These phenomena are assumed to be caused by the hardening of the TiNi alloy induced by low-temperature annealing.