RUS  ENG
Full version
JOURNALS // Lobachevskii Journal of Mathematics // Archive

Lobachevskii J. Math., 2002 Volume 10, Pages 17–26 (Mi ljm120)

Complete convergence of weighted sums in Banach spaces and the bootstrap mean

T.-Ch. Hua, M. Ordóñez Cabrerab, S. H. Sungc, A. I. Volodinde

a National Tsing Hua University, Department of Mathematics
b University of Seville
c Pai Chai University
d Kazan State University
e University of Regina

Abstract: Let $\{X_{ni},1\le i\le k_n, n\ge 1\}$ be an array of rowwise independent random elements taking values in a real separable Banach space, and $\{a_{ni},1\le i\le k_n, n\ge 1\}$ an array of constants. Under some conditions of Chung [7] and Hu and Taylor [10] types for the arrays, and using a theorem of Hu et al. [9], the equivalence amongst various kinds of convergence of $\sum_{i=1}^{k_n}a_{ni}X_{ni}$ to zero is obtained. It leads to an unified vision of recent results in the literature. The authors use the main result in the paper in order to obtain the strong consistency of the bootstrapped mean of random elements in a Banach space from its weak consistency.

Keywords: random elements, Banach spaces, weighted sums, rowwise independence, complete convergence, bootstrap mean.

Submitted by: D. Kh. Mushtari
Received: 03.04.2002

Language: English



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025