RUS  ENG
Full version
JOURNALS // Lobachevskii Journal of Mathematics // Archive

Lobachevskii J. Math., 2001 Volume 8, Pages 185–189 (Mi ljm131)

This article is cited in 4 papers

On Hausdorff intrinsic metric

E. N. Sosov

N. G. Chebotarev Research Institute of Mathematics and Mechanics, Kazan State University

Abstract: In this paper we prove that in the set of all nonempty bounded closed subsets of a metric space $(X,\rho)$ the Hausdorff metric is the Hausdorff intrinsic metric if and only if the metric $\rho$ is an intrinsic metric. In a space with an intrinsic metric we obtain the upper bound for the Hausdorff distance between generalized balls.

Submitted by: B. N. Shapukov
Received: 03.04.2001

Language: English



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025