RUS  ENG
Full version
JOURNALS // Lobachevskii Journal of Mathematics // Archive

Lobachevskii J. Math., 1999 Volume 4, Pages 207–218 (Mi ljm157)

On formal series and infinite products over Lie algebras

D. P. Zhelobenko

Independent University of Moscow

Abstract: A brief survey of new methods for the study of nonstandard associative envelopes of Lie algebras is presented. Various extensions of the universal enveloping algebra $U\mathfrak g$ are considered, where $\mathfrak g$ is a symmetrizable Kac–Moody algebra. An elementary proof is given for describing the “extremal projector” over $\mathfrak g$ as an infinite product over $U\mathfrak g$. Certain applications to the theory of $\mathfrak g$-modules are discussed.

Keywords: Lie algebras, Kac–Moody algebras, enveloping algebras, quantum algebras, modules.

Submitted by: B. N. Shapukov
Received: 27.07.1999

Language: English



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025