RUS  ENG
Full version
JOURNALS // Lobachevskii Journal of Mathematics // Archive

Lobachevskii J. Math., 2006 Volume 21, Pages 3–31 (Mi ljm45)

This article is cited in 34 papers

Hardy type inequalities in higher dimensions with explicit estimate of constants

F. G. Avkhadiev

Kazan State University

Abstract: Let $\Omega$ be an open set in $\mathbb R^n$ such that $\Omega\ne\mathbb R^n$. For $1\le p<\infty$, $1<s<\infty$ and $\delta=\operatorname{dist}(x,\partial\Omega)$ we estimate the Hardy constant
$$ c_p(s,\Omega)=\sup\{\|f/\delta^{s/p}\|_{L^p(\Omega)}:f\in C_0^\infty(\Omega),\ \|(\nabla f)/\delta^{s/p-1}\|_{L^p(\Omega)}=1\} $$
and some related quantities.
For open sets $\Omega\subset\mathbb R^2$ we prove the following bilateral estimates
$$ \min\{2,p\}M_0(\Omega)\le c_p(2,\Omega)\le 2p(\pi M_0(\Omega)+a_0)^2, \quad a_0=4.38, $$
where $M_0(\Omega)$ is the geometrical parameter defined as the maximum modulus of ring domains in $\Omega$ with center on $\partial\Omega$. Since the condition $M_0 (\Omega)<\infty$ means the uniformly perfectness of $\partial\Omega$, these estimates give a direct proof of the following Ancona–Pommerenke theorem: $c_2(2,\Omega)$ is finite if and only if the boundary set $\partial\Omega$ is uniformly perfect (see [2], [22] and [40]).
Moreover, we obtain the following direct extension of the one dimensional Hardy inequality to the case $n\ge 2$: if $s>n$, then for arbitrary open sets $\Omega\subset\mathbb R^n$ ($\Omega\ne\mathbb R^n$) and any $p\in[1,\infty)$ the sharp inequality $c_p(s,\Omega)\le p/(s-n)$ is valid. This gives a solution of a known problem due to J. L. Lewis [31] and A. Wannebo [44].
Estimates of constants in certain other Hardy and Rellich type inequalities are also considered. In particular, we obtain an improved version of a Hardy type inequality by H. Brezis and M. Marcus [13] for convex domains and give its generalizations.

Keywords: Hardy type inequalities, distance to the boundary, uniformly perfect sets, Rellich type inequalities.

Received: 09.03.2006

Language: English



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024