RUS  ENG
Full version
JOURNALS // Lobachevskii Journal of Mathematics // Archive

Lobachevskii J. Math., 2003 Volume 13, Pages 45–50 (Mi ljm97)

The embedding of an ordered semigroup into an le-semigroup

N. Kehayopulu, M. Tsingelis

National and Capodistrian University of Athens, Department of Mathematics

Abstract: In this paper we prove the following: If $S$ is an ordered semigroup, then the set $\mathcal P(S)$ of all subsets of $S$ with the multiplication "$\circ$" on $\mathcal P(S)$ defined by "$A\circ B\colon=(AB]$ if $A,B\in\mathcal P(S)$, $A\neq\emptyset$, $B\neq\emptyset$ and $A\circ B\colon=\emptyset$ if $A=\emptyset$ or $B=\emptyset$ is an le-semigroup having a zero element and $S$ is embedded in $\mathcal P(S)$.

Submitted by: M. M. Arslanov
Received: 30.09.2003

Language: English



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024