RUS  ENG
Full version
JOURNALS // Modelirovanie i Analiz Informatsionnykh Sistem // Archive

Model. Anal. Inform. Sist., 2014 Volume 21, Number 1, Pages 7–31 (Mi mais356)

This article is cited in 2 papers

Corner Boundary Layer in Nonlinear Elliptic Problems Containing Derivatives of First Order

V. F. Butuzova, I. V. Denisovb

a M. V. Lomonosov Moscow State University, Leninskie Gory, Moscow, 119991, Russia
b L. N. Tolstoy Tula State Pedagogical University, pr. Lenina, 125, Tula, 300026, Russia

Abstract: In a rectangular domain the first boundary value problem is considered for a singularly perturbed elliptic equation
$$ \varepsilon^2\Delta u-\varepsilon^\alpha A(x, y)\frac{\partial u}{\partial y}= F(u,x,y,\varepsilon) $$
with a nonlinear on $u$ function $F$. The complete asymptotic solution expansion uniform in a closed rectangle is constructed for $\alpha> 1$. If $0<\alpha< 1$, the uniform asymptotic approximation is constructed in zero and first approximations. The features of the asymptotic behavior are noted in the case $\alpha=1$.

Keywords: boundary layer, singularly perturbed equation, asymptotic expansion.

UDC: 519.632

Received: 07.01.2014



© Steklov Math. Inst. of RAS, 2024