RUS  ENG
Full version
JOURNALS // Modelirovanie i Analiz Informatsionnykh Sistem // Archive

Model. Anal. Inform. Sist., 2014 Volume 21, Number 4, Pages 47–53 (Mi mais386)

Perfect Prismatoids are Lattice Delaunay Polytopes

M. A. Kozachok, A. N. Magazinov

Steklov Mathematical Institute of Russian Academy of Sciences, Gubkina str. 8, Moscow, 119991, Russia

Abstract: A perfect prismatoid is a convex polytope $P$ such that for every its facet $F$ there exists a supporting hyperplane $\alpha\parallel F$ such that any vertex of $P$ belongs to either $F$ or $\alpha$. Perfect prismatoids concern with Kalai conjecture, that any centrally symmetric $d$-polytope $P$ has at least $3^d$ non-empty faces and any polytope with exactly $3^d$ non-empty faces is a Hanner polytope. Any Hanner polytope is a perfect prismatoid (but not vice versa). A $0/1$-polytope is a convex hull of some vertices of the $d$-dimensional unit cube. We prove that every perfect prismatoid is affinely equivalent to some $0/1$-polytope of the same dimension. (And therefore every perfect prismatoid is a lattice polytope.) Let $\Lambda$ be a lattice in $\mathbb{R}^d$ and $D$ be a polytope inscribed in a sphere $B$. Denote a boundary of $B$ by $\partial B$ and an interior of $B$ by $int\, B$. The polytope D is a lattice Delaunay polytope if $\Lambda\cap int\, B=\varnothing$ and $D$ is a convex hull of $\Lambda\cap\partial B$. We prove that every perfect prismatoid is affinely equivalent to some lattice Delaunay polytope.

Keywords: polytopes, Delaunay polytopes, Kalai conjecture.

UDC: 517.9

Received: 14.07.2014



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024