Abstract:
In the theory of convex polyhedra there is a problem left unsolved which is sometimes called The Durer problem: Does every convex polyhedron have at least one connected unfolding? In this paper we consider a related problem: Find the upper bound $c(P)$ for the number of components in the edge unfolding of a convex polyhedron $P$ in terms of the number $F$ of faces. We showed that $c(P)$ does not exceed the cardinality of any dominating set in the dual graph $G(P)$ of the polyhedron $P$. Next we proved that there exists a dominating set in $G(P)$ of cardinality not more than $3F/7$. These two statements lead to an estimation $c(P)\le 3F/7$ that was proved in this work.