RUS  ENG
Full version
JOURNALS // Modelirovanie i Analiz Informatsionnykh Sistem // Archive

Model. Anal. Inform. Sist., 2018 Volume 25, Number 3, Pages 291–311 (Mi mais629)

This article is cited in 11 papers

Computational Geometry

On optimal interpolation by linear functions on an $n$-dimensional cube

M. V. Nevskii, A. Yu. Ukhalov

Centre of Integrable Systems, P.G. Demidov Yaroslavl State University, 14 Sovetskaya str., Yaroslavl, 150003, Russian Federation

Abstract: Let $n\in{\mathbb N}$, and let $Q_n$ be the unit cube $[0,1]^n$. By $C(Q_n)$ we denote the space of continuous functions $f:Q_n\to{\mathbb R}$ with the norm $\|f\|_{C(Q_n)}:=\max\limits_{x\in Q_n}|f(x)|,$ by $\Pi_1\left({\mathbb R}^n\right)$ — the set of polynomials of $n$ variables of degree $\leq 1$ (or linear functions). Let $x^{(j)},$ $1\leq j\leq n+1,$ be the vertices of $n$-dimnsional nondegenerate simplex $S\subset Q_n$. An interpolation projector $P:C(Q_n)\to \Pi_1({\mathbb R}^n)$ corresponding to the simplex $S$ is defined by equalities $Pf\left(x^{(j)}\right)= f\left(x^{(j)}\right)$. The norm of $P$ as an operator from $C(Q_n)$ to $C(Q_n)$ may be calculated by the formula $\|P\|=\max\limits_{x\in\mathrm{ver}(Q_n)} \sum\limits_{j=1}^{n+1} |\lambda_j(x)|$. Here $\lambda_j$ are the basic Lagrange polynomials with respect to $S,$ $\mathrm{ver}(Q_n)$ is the set of vertices of $Q_n$. Let us denote by $\theta_n$ the minimal possible value of $\|P\|$. Earlier, the first author proved various relations and estimates for values $\|P\|$ and $\theta_n$, in particular, having geometric character. The equivalence $\theta_n\asymp \sqrt{n}$ takes place. For example, the appropriate, according to dimension $n$, inequalities may be written in the form $\frac{1}{4}\sqrt{n}$ $<\theta_n$ $<3\sqrt{n}$. If the nodes of the projector $P^*$ coincide with vertices of an arbitrary simplex with maximum possible volume, we have $\|P^*\|\asymp\theta_n$. When an Hadamard matrix of order $n+1$ exists, holds $\theta_n\leq\sqrt{n+1}$. In the paper, we give more precise upper bounds of numbers $\theta_n$ for $21\leq n \leq 26$. These estimates were obtained with the application of maximum volume simplices in the cube. For constructing such simplices, we utilize maximum determinants containing the elements $\pm 1$. Also, we systematize and comment the best nowaday upper and low estimates of numbers $\theta_n$ for a concrete $n$.

Keywords: $n$-dimensional simplex, $n$-dimensional cube, interpolation, projector, norm, numerical methods.

UDC: 514.17+517.51+519.6

Received: 11.12.2017

DOI: 10.18255/1818-1015-2018-3-291-311


 English version:
Modeling and Analysis of Information Systems (MAIS), 2018, 52:7, 828–842

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024