RUS  ENG
Full version
JOURNALS // Modelirovanie i Analiz Informatsionnykh Sistem // Archive

Model. Anal. Inform. Sist., 2018 Volume 25, Number 3, Pages 312–322 (Mi mais630)

Computational Geometry

On the Hodge, Tate and Mumford–Tate conjectures for fibre products of families of regular surfaces with geometric genus 1

O. V. Oreshkina (Nikol'skaya)

A.G. and N.G. Stoletov Vladimir State University, 87 Gorky str., Vladimir, 600000, Russia

Abstract: The Hodge, Tate and Mumford–Tate conjectures are proved for the fibre product of two non-isotrivial 1-parameter families of regular surfaces with geometric genus 1 under some conditions on degenerated fibres, the ranks of the Néron–Severi groups of generic geometric fibres and representations of Hodge groups in transcendental parts of rational cohomology.
Let $\pi_i:X_i\to C\quad (i = 1, 2)$ be a projective non-isotrivial family (possibly with degeneracies) over a smooth projective curve $C$. Assume that the discriminant loci $\Delta_i=\{\delta\in C \vert \mathrm{Sing}(X_{i\delta})\neq\varnothing\} \quad (i = 1, 2)$ are disjoint, $h^{2,0}(X_{ks})=1,\quad h^{1,0}(X_{ks}) = 0$ for any smooth fibre $X_{ks}$, and the following conditions hold:
$(i)$ for any point $\delta \in \Delta_i$ and the Picard–Lefschetz transformation $ \gamma \in \mathrm{GL}(H^2 (X_{is}, \mathbb{Q})) $, associated with a smooth part $\pi'_i: X'_i\to C\setminus\Delta_i$ of the morphism $\pi_i$ and with a loop around the point $\delta \in C$, we have $(\log(\gamma))^2\neq0$;
$(ii)$ the variety $X_i (i = 1, 2)$, the curve $C$ and the structure morphisms $\pi_i:X_i\to C$ are defined over a finitely generated subfield $k \hookrightarrow \mathbb{C}$.
If for generic geometric fibres $X_{1s}$ and $X_{2s}$ at least one of the following conditions holds:
$(a)$ $b_2(X_{1s})-{\mathrm{rank}}\, {\mathrm{NS}}(X_{1s})$ is an odd prime number, $\quad $ $b_2(X_{1s})-{\mathrm{rank}}\,{\mathrm{NS}}(X_{1s})\neq b_2(X_{2s})-{\mathrm{rank}} \,{\mathrm{NS}}(X_{2s})$;
$(b)$ the ring ${\mathrm{End}}_{\mathrm{Hg}(X_{1s})} {\mathrm{NS}}_{\mathbb{Q}}(X_{1s})^\perp$ is an imaginary quadratic field, $\quad b_2(X_{1s})-{\mathrm{rank}}\,{\mathrm{NS}}(X_{1s})\neq 4$,
${\mathrm{End}}_{\mathrm{Hg}(X_{2s})} {\mathrm{NS}}_{\mathbb{Q}}(X_{2s})^\perp$ is a totally real field or $b_2(X_{1s})-{\mathrm{rank}}\,{\mathrm{NS}}(X_{1s}) > b_2(X_{2s})-{\mathrm{rank}}\, {\mathrm{NS}}(X_{2s})$;
$(c)$ $[b_2(X_{1s})-{\mathrm{rank}}\,{\mathrm{NS}}(X_{1s})\neq 4, {\mathrm{End}}_{\mathrm{Hg}(X_{1s})} {\mathrm{NS}}_{\mathbb{Q}}(X_{1s})^\perp= \mathbb{Q}$; $b_2(X_{1s})-{\mathrm{rank}}\,{\mathrm{NS}}(X_{1s})\neq b_2(X_{2s})-{\mathrm{rank}} \,{\mathrm{NS}}(X_{2s})$, then for the fibre product $X_1 \times_C X_2$ the Hodge conjecture is true, for any smooth projective $k$-variety $X_0$ with the condition $X_1 \times_C X_2$ $\widetilde{\rightarrow}$ $X_0 \otimes_k \mathbb{C}$ the Tate conjecture on algebraic cycles and the Mumford–Tate conjecture for cohomology of even degree are true.

Keywords: Hodge, Tate and Mumford–Tate conjectures, fibre product, Mumford–Tate group, $l$-adic representation.

UDC: 512.7

Received: 24.12.2017

DOI: 10.18255/1818-1015-2018-3-312-322



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025