Abstract:
Part II of the paper considers a game between a group of $n$ pursuers and one evader that move along the $1$-Skeleton graph $\mathbf{M}$ of regular polyhedrons of three types in the spaces $\mathbb{R}^d$, $d\geqslant 3$. Like in Part I, the goal is to find an integer $N(\mathbf{M})$ with the following property: if $n\geqslant N(\mathbf{M})$, then the group of pursuers wins the game; if $n<N(\mathbf{M})$, the evader wins. It is shown that $N(\mathbf{M})=2$ for the $d$-dimensional simplex or cocube (a multidimensional analog of octahedron) and $N(\mathbf{M})=[d/2]+1$ for the $d$-dimensional cube.