RUS  ENG
Full version
JOURNALS // Matematicheskoe modelirovanie // Archive

Matem. Mod., 1998 Volume 10, Number 4, Pages 83–90 (Mi mm1272)

This article is cited in 1 paper

Computational methods and algorithms

Tishkiru Rotation invariance of parametric spline approximation

N. N. Kalitkin, L. V. Kuzmina, E. V. Maevskii, V. F. Tishkin

Institute for Mathematical Modelling, Russian Academy of Sciences

Abstract: Approximation of plane and space curves with parametric splines was investigated. It was prooved that natural or periodic interpolative spline gave rotationally invariant approximation. Least square splines under some restrictions had the same property. But splines with non-periodic boundary conditions often lead to approximation non-invariant rotationally. The algorithm was developed for curve's length choice as a parameter.

Received: 08.12.1997



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024