Abstract:
Sufficient conditions of existence of positive and asymptotically stable equilibrium for nonautonomous discrete exponential predator-prey model are obtained. If
$$
r\in\Biggl(0,\frac1a+\frac1{a\sqrt{1-4a\gamma}}\Biggr),\qquad r\ne\frac1{2a}+\frac1{2a\sqrt{1-4a\gamma}},
$$
then the equation of the nonautonomous “Consensus” model
$$
x_{n+1}=x_n\exp\Bigl(r_n\Bigl(-a+\frac1{x_n}-\frac\gamma{x^2_n}\Bigr)\Bigr),\qquad r_n>0,\quad a>0,\quad\gamma>0,\quad a\gamma<\frac14,
$$
has positive and asymptotically stable equilibrium.