RUS  ENG
Full version
JOURNALS // Matematicheskoe modelirovanie // Archive

Matem. Mod., 2015 Volume 27, Number 7, Pages 37–43 (Mi mm3620)

Superfast method with guaranteed accuracy for elliptic equations in rectangular domain

A. A. Belovab, N. N. Kalitkinab

a Keldysh Institute of Applied Mathematics of RAS, Moscow, Russia
b Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia

Abstract: In finite-difference solution of elliptic equations we face with algebraic systems of enormous sizes with strongly rarefied matrices. A superfast iterative technique has been proposed that is viable for a wide class of problems. The method is based on the relaxation count for economic evolutionary factorized scheme using special set of steps constructed in logarithmic scale. The iterations convergence is proved to be exponential. The superfast convergence rate makes it possible to solve elliptic equations on multiply densening spatial grids with Richardson extrapolation applied. The latter provides a posteriori asymptotically precise error estimations for the grid solution.

Keywords: Elliptic equations, evolutional factorization, relaxation count, logarithmic set of steps, Richardson method.

Received: 30.03.2015



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024