RUS  ENG
Full version
JOURNALS // Matematicheskoe modelirovanie // Archive

Mat. Model., 2002 Volume 14, Number 5, Pages 75–88 (Mi mm595)

2-nd International Conference OFEA'2001 "Optimization of Finite Element Approximation and Splines and Wavelets", June 25-29, 2001, St.-Petersburg

Global analysis of wavelet methods for Euler's equation

W. Lawton

Department of Mathematics, National University of Singapore

Abstract: Euler's equation for the velocity è of an inviscid incompressible flow on Euclidean space admits the weak formulation $(\dot u,v)=([u,v],w)$, for all divergence free vector fields $v$. Here $(\,\cdot\,,\,\cdot\,)$ denotes the scalar product that represents kinetic energy and $[\,\cdot\,,\,\cdot\,]$ denotes the Poisson bracket. We employ global analysis methods based on this formulation to discuss Faedo–Galerkin approximation using divergence free wavelets.

Language: English



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025