RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2003 Volume 3, Number 3, Pages 1013–1037 (Mi mmj119)

This article is cited in 1 paper

$L$-convex-concave sets in real projective space and $L$-duality

A. G. Khovanskiia, D. Novikovb

a University of Toronto
b Department of Mathematical Sciences, Indiana University–Purdue University Indianapolis

Abstract: We define a class of $L$-convex-concave subsets of $\mathbb RP^n$, where $L$ is a projective subspace of dimension $l$ in $\mathbb RP^n$. These are sets whose sections by any $(l+1)$-dimensional space $L'$ containing $L$ are convex and concavely depend on $L'$. We introduce an $L$-duality for these sets and prove that the $L$-dual to an $L$-convex-concave set is an $L^*$-convex-concave subset of $(\mathbb RP^n)^*$. We discuss a version of Arnold's conjecture for these sets and prove that it is true (or false) for an $L$-convex-concave set and its $L$-dual simultaneously.

Key words and phrases: Separability, duality, convex-concave set, nondegenerate projective hypersurfaces.

MSC: 52A30, 52A35

Received: August 5, 2002

Language: English

DOI: 10.17323/1609-4514-2003-3-3-1013-1037



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024