RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2003 Volume 3, Number 4, Pages 1223–1245 (Mi mmj129)

This article is cited in 1 paper

On the Wecken property for the root problem of mappings between surfaces

S. A. Bogatyia, D. L. Gonçalvesb, E. A. Kudryavtsevaa, H. Zieschangac

a M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
b Universidade de São Paulo, Instituto de Matemática e Estatística
c Ruhr-Universität Bochum

Abstract: Let $M_1$ and $M_2$ be two closed (not necessarily orientable) surfaces, $f\colon M_1\to M_2$ be a continuous map, and $c$ be a point in $M_2$. By definition, the map $f$ has the Wecken property for the root problem if $f$ can be deformed into a map $\tilde f$ such that the number $|\tilde f{-1}(c)|$ of roots of $\tilde f$ coincides with the number ${\rm NR}[f]$ of the essential Nielsen root classes of $f$, that is, ${\rm MR}[f]={\rm NR}[f]$. We characterize the pairs of surfaces $M_1$, $M_2$ for which all continuous mappings $f\colon M_1\to M_2$ have the Wecken property for the root problem. The criterion is formulated in terms of the Euler characteristics of the surfaces and their orientability properties.

Key words and phrases: Coincidence points, roots of maps, Nielsen classes, branched covering.

MSC: 54H25, 57M12, 55M20

Received: October 28, 2001

Language: English

DOI: 10.17323/1609-4514-2003-3-4-1223-1245



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024