RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2003 Volume 3, Number 4, Pages 1269–1291 (Mi mmj131)

This article is cited in 14 papers

Action of Coxeter groups on $m$-harmonic polynomials and Knizhnik–Zamolodchikov equations

G. Feldera, A. P. Veselovbc

a Departement für Mathematik, Eidgenösische Technische Hochschule Zürich
b L. D. Landau Institute for Theoretical Physics, Russian Academy of Sciences
c Loughborough University

Abstract: The Matsuo–Cherednik correspondence is an isomorphism from solutions of Knizhnik–Zamolodchikov equations to eigenfunctions of generalized Calogero–Moser systems associated to Coxeter groups $G$ and a multiplicity function m on their root systems. We apply a version of this correspondence to the most degenerate case of zero spectral parameters. The space of eigenfunctions is then the space Hm of $m$-harmonic polynomials. We compute the Poincaré polynomials for the space Hm and for its isotypical components corresponding to each irreducible representation of the group $G$. We also give an explicit formula for m-harmonic polynomials of lowest positive degree in the $S_n$ case.

Key words and phrases: Coxeter groups, $m$-harmonic polynomials, Knizhnik–Zamolodchikov equation.

MSC: 13A50, 20F55

Received: July 9, 2002

Language: English

DOI: 10.17323/1609-4514-2003-3-4-1269-1291



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024