RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2001 Volume 1, Number 1, Pages 125–139 (Mi mmj15)

This article is cited in 5 papers

Isogeny class and Frobenius root statistics for abelian varieties over finite fields

S. G. Vlăduţ

Institut de Mathématiques de Luminy

Abstract: Let $I(g,q,N)$ be the number of isogeny classes of $g$-dimensional abelian varieties over a finite field  $\mathbb F$ having a fixed number $N$ of $\mathbb F$-rational points. We describe the asymptotic (for $q\to\infty$) distribution of $I(g,q,N)$ over possible values of $N$. We also prove an analogue of the Sato–Tate conjecture for isogeny classes of $g$-dimensional abelian varieties.

Key words and phrases: Abelian variety, isogeny class, Frobenius root, elliptic curve, Sato-Tate conjecture, probability measure.

MSC: Primary 11G25, 14G15, 14K15; Secondary 11G10, 14K02, 28A33

Received: November 29, 2000; in revised form January 16, 2001

Language: English

DOI: 10.17323/1609-4514-2001-1-1-125-139



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024