RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2004 Volume 4, Number 2, Pages 455–502 (Mi mmj156)

This article is cited in 30 papers

Modulus of analytic classification for unfoldings of generic parabolic diffeomorphisms

P. Mardešica, R. Roussariea, Ch. Rousseaub

a Université de Bourgogne
b Université de Montréal

Abstract: In this paper we give a complete modulus of analytic classification under weak equivalence for generic analytic 1-parameter unfoldings of diffeomorphisms with a generic parabolic point. The modulus is composed of a canonical parameter associated to the family, together with an unfolding of the Ecalle–Voronin modulus. We then study the fixed points bifurcating from a parabolic point with nontrivial Ecalle–Voronin modulus and show that some of the non-hyperbolic resonant ones are non integrable.
In the Addendum it is shown that weak equivalence can be replaced by conjugacy.

Key words and phrases: Analytic classification, parabolic germ of diffeomorphism, modulus, saddle-node vector field.

MSC: 34C, 58F

Received: July 27, 2002

Language: English

DOI: 10.17323/1609-4514-2004-4-2-455-502



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024