RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2001 Volume 1, Number 2, Pages 157–220 (Mi mmj17)

This article is cited in 10 papers

Matrix balls, radial analysis of Berezin kernels, and hypergeometric determinants

Yu. A. Neretinabc

a Institute for Theoretical and Experimental Physics (Russian Federation State Scientific Center)
b Independent University of Moscow
c International Erwin Schrödinger Institute for Mathematical Physics

Abstract: Consider the pseudounitary group $G=U(p,q)$ and its compact subgroup $K=U(p)\times U(q)$. We survey the analysis of the Berezin kernels on the symmetric space $G/K$. We also explicitly construct unitary intertwining operators from the Berezin representations of $G$ to the representation of $G$ in the space $L^2(G/K)$. This implies the existence of a canonical action of the group $G\times G$ in $L^2(G/K)$.

Key words and phrases: Symmetric space, Cartan domain, positive definite kernel, spherical function, hypergeometric function, Plancherel formula, Hahn polynomials, special functions.

MSC: 43A85, 22E46, 53C35, 32A25, 43A90, 33C05, 33E20, 15A15

Received: October 26, 2000; in revised form January 30, 2001

Language: English

DOI: 10.17323/1609-4514-2001-1-2-157-220



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024