RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2005 Volume 5, Number 1, Pages 157–169 (Mi mmj189)

This article is cited in 1 paper

On the velocities of Lagrangian minimizers

K. M. Khanina, D. V. Khmelevb, A. N. Sobolevskiic

a L. D. Landau Institute for Theoretical Physics, Russian Academy of Sciences
b Isaac Newton Institute for Mathematical Sciences
c Observatoire de la Côte d'Azur

Abstract: We consider minimizers for the natural time-dependent Lagrangian system in $\mathbb R^d$ with Lagrangian $L(x,v,t)=|v|^{\beta}/\beta-U(x,t)$, $\beta>1$, where $\beta>1$. For minimizers on a $T$ with one end-point fixed, we prove that the absolute values of velocities are bounded by $K\log^{2/\beta}T$, provided that the potential $U(x,t)$ and its gradient are uniformly bounded. We also show that the above estimate is asymptotically sharp.

Key words and phrases: Action-minimizing trajectories, time-dependent Lagrangian systems, variational problems in unbounded domains.

MSC: 37J50

Received: June 30, 2003

Language: English

DOI: 10.17323/1609-4514-2005-5-1-157-169



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024