This article is cited in
9 papers
Small elliptic quantum group $e_{\tau,\gamma}(\mathfrak{sl}_N)$
V. O. Tarasova,
A. N. Varchenkob a St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
b Department of Mathematics, University of North Carolina at Chapel Hill
Abstract:
The small elliptic quantum group
$e_{\tau,\gamma}(\mathfrak{sl}_N)$, introduced in the paper, is an elliptic dynamical analogue of the universal enveloping algebra
$U(\mathfrak{sl}_N)$. We define highest weight modules, Verma modules, and contragradient modules over
$e_{\tau,\gamma}(\mathfrak{sl}_N)$, the dynamical Shapovalov form for
$e_{\tau,\gamma}(\mathfrak{sl}_N)$, and the contravariant form for highest weight
$e_{\tau,\gamma}(\mathfrak{sl}_N)$-modules. We show that any finite-dimensional
$\mathfrak{sl}_N$-module and any Verma module over
$\mathfrak{sl}_N$ can be lifted to the corresponding
$e_{\tau,\gamma}(\mathfrak{sl}_N)$-module on the same vector space. For the elliptic quantum group
$E_{\tau,\gamma}(\mathfrak{sl}_N)$ we construct the evaluation morphism $E_{\tau,\gamma}(\mathfrak{sl}_N)\to e_{\tau,\gamma}(\mathfrak{sl}_N)$, thus making any
$e_{\tau,\gamma}(\mathfrak{sl}_N)$-module into an evaluation module
$E_{\tau,\gamma}(\mathfrak{sl}_N)$-module.
Key words and phrases:
Dynamical Yang–Baxter equation, elliptic quantum group.
MSC: 17B37,
81R10 Received: November 22, 2000
Language: English
DOI:
10.17323/1609-4514-2001-1-2-243-286