RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2001 Volume 1, Number 2, Pages 243–286 (Mi mmj19)

This article is cited in 9 papers

Small elliptic quantum group $e_{\tau,\gamma}(\mathfrak{sl}_N)$

V. O. Tarasova, A. N. Varchenkob

a St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
b Department of Mathematics, University of North Carolina at Chapel Hill

Abstract: The small elliptic quantum group $e_{\tau,\gamma}(\mathfrak{sl}_N)$, introduced in the paper, is an elliptic dynamical analogue of the universal enveloping algebra $U(\mathfrak{sl}_N)$. We define highest weight modules, Verma modules, and contragradient modules over $e_{\tau,\gamma}(\mathfrak{sl}_N)$, the dynamical Shapovalov form for $e_{\tau,\gamma}(\mathfrak{sl}_N)$, and the contravariant form for highest weight $e_{\tau,\gamma}(\mathfrak{sl}_N)$-modules. We show that any finite-dimensional $\mathfrak{sl}_N$-module and any Verma module over $\mathfrak{sl}_N$ can be lifted to the corresponding $e_{\tau,\gamma}(\mathfrak{sl}_N)$-module on the same vector space. For the elliptic quantum group $E_{\tau,\gamma}(\mathfrak{sl}_N)$ we construct the evaluation morphism $E_{\tau,\gamma}(\mathfrak{sl}_N)\to e_{\tau,\gamma}(\mathfrak{sl}_N)$, thus making any $e_{\tau,\gamma}(\mathfrak{sl}_N)$-module into an evaluation module $E_{\tau,\gamma}(\mathfrak{sl}_N)$-module.

Key words and phrases: Dynamical Yang–Baxter equation, elliptic quantum group.

MSC: 17B37, 81R10

Received: November 22, 2000

Language: English

DOI: 10.17323/1609-4514-2001-1-2-243-286



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024