RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2005 Volume 5, Number 3, Pages 507–522 (Mi mmj208)

This article is cited in 5 papers

Asymptotic decay of correlations for a random walk in interaction with a Markov field

C. Boldrighinia, R. A. Minlosb, F. R. Nardic, A. Pellegrinottid

a University of Rome "La Sapienza"
b Institute for Information Transmission Problems, Russian Academy of Sciences
c Università degli Studi di Roma — Tor Vergata
d Università degli Studi Roma Tre

Abstract: We consider a random walk on $\mathbb Z$ in a random environment independent in space and with a Markov evolution in time. We study the decay in time of correlations of the increments of the annealed random walk. We prove that for small stochasticity they fall off as $\asymp t^{-1/2}\epsilon^{-\alpha_1 t}$ for $\alpha_1>0$. The analysis shows that, as the parameters of the model vary, a transition to a fall-off of the type $\asymp\epsilon^{-\bar\alpha t}$, for $\bar\alpha\in(0,\alpha_1)$, may occur.

Key words and phrases: Random walk, correlations, Markov chain, increments, field “from the point of view of the particle”.

MSC: 60J15, 82B10, 82B41

Received: July 4, 2005

Language: English

DOI: 10.17323/1609-4514-2005-5-3-507-522



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024