RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2006 Volume 6, Number 2, Pages 317–351 (Mi mmj249)

This article is cited in 24 papers

The rigidity problem for analytic critical circle maps

D. V. Khmelev, M. Yampolskya

a Department of Mathematics, University of Toronto

Abstract: It is shown that if $f$ and $g$ are any two analytic critical circle mappings with the same irrational rotation number, then the conjugacy that maps the critical point of $f$ to that of $g$ has regularity $C^{1+\alpha}$ at the critical point, with a universal value of $\alpha>0$. As a consequence, a new proof of the hyperbolicity of the full renormalization horseshoe of critical circle maps is given.

Key words and phrases: Critical circle mapping, rigidity, renormalization.

MSC: 37E10

Received: November 12, 2005

Language: English

DOI: 10.17323/1609-4514-2006-6-2-317-351



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024