RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2006 Volume 6, Number 2, Pages 389–404 (Mi mmj252)

This article is cited in 2 papers

Equivariant symplectic geometry of cotangent bundles. II

D. A. Timashev

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: We examine the structure of the cotangent bundle $T^*X$ of an algebraic variety X acted on by a reductive group $G$ from the viewpoint of equivariant symplectic geometry. In particular, we construct an equivariant symplectic covering of $T^*X$ by the cotangent bundle of a certain variety of horospheres in $X$, and integrate the invariant collective motion on $T^*X$. These results are based on a “local structure theorem” describing the action of a certain parabolic in $G$ on an open subset of $X$, which is interesting by itself.

Key words and phrases: Cotangent bundle, moment map, horosphere, symplectic covering, cross-section, invariant collective motion, flat.

MSC: Primary 14L30; Secondary 53D05, 53D20

Received: March 3, 2005

Language: English

DOI: 10.17323/1609-4514-2006-6-2-389-404



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025