RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2006 Volume 6, Number 4, Pages 629–655 (Mi mmj263)

This article is cited in 23 papers

Meixner polynomials and random partitions

Alexei Borodina, Grigori Olshanskiib

a Mathematics, Caltech, Pasadena, CA, U.S.A.
b Dobrushin Mathematics Laboratory, Institute for Information Transmission Problems, Moscow, RUSSIA

Abstract: The paper deals with a 3-parameter family of probability measures on the set of partitions, called the z-measures. The z-measures first emerged in connection with the problem of harmonic analysis on the infinite symmetric group. They are a special and distinguished case of Okounkov's Schur measures. It is known that any Schur measure determines a determinantal point process on the 1-dimensional lattice. In the particular case of z-measures, the correlation kernel of this process, called the discrete hypergeometric kernel, has especially nice properties. The aim of the paper is to derive the discrete hypergeometric kernel by a new method, based on a relationship between the z-measures and the Meixner orthogonal polynomial ensemble. In another paper (Prob. Theory Rel. Fields 135 (2006), 84–152) we apply the same approach to a dynamical model related to the z-measures.

Key words and phrases: Random partitions, random Young diagrams, determinantal point processes, correlation functions, correlation kernels, orthogonal polynomial ensembles, Meixner polynomials, Krawtchouk polynomials.

MSC: 60C05, 33C45

Received: June 16, 2006

Language: English

DOI: 10.17323/1609-4514-2006-6-4-629-655



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025