RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2007 Volume 7, Number 1, Pages 21–54 (Mi mmj269)

This article is cited in 26 papers

Complex codimension one singular foliations and Godbillon–Vey sequences

D. Cerveaua, A. Lins-Netob, F. Loraya, J. V. Pereirab, F. Touzeta

a Institute of Mathematical Research of Rennes
b Instituto Nacional de Matemática Pura e Aplicada

Abstract: Let $\mathcal F$ be a codimension one singular holomorphic foliation on a compact complex manifold $M$. Assume that there exists a meromorphic vector field $X$ on $M$ generically transversal to $\mathcal F$. Then, we prove that $\mathcal F$ is the meromorphic pull-back of an algebraic foliation on an algebraic manifold $N$, or $\mathcal F$ is transversely projective (in the sense of [19]), improving our previous work [7].
Such a vector field insures the existence of a global meromorphic Godbillon–Vey sequence for the foliation $\mathcal F$. We derive sufficient conditions on this sequence insuring such alternative. For instance, if there exists a finite Godbillon–Vey sequence or if the Godbillon–Vey 3-form $\omega_0\land\omega_1\land\omega_2$ is zero, then $\mathcal F$ is the pull-back of a foliation on a surface, or $\mathcal F$ is transversely projective (in the sense of [19]). We illustrate these results with many examples.

Key words and phrases: Holomorphic foliations, algebraic reduction, transversal structure.

MSC: 37F75

Received: January 1, 2006

Language: English

DOI: 10.17323/1609-4514-2007-7-1-21-54



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024