RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2007 Volume 7, Number 2, Pages 195–207 (Mi mmj278)

This article is cited in 37 papers

Multiples of lattice polytopes without interior lattice points

V. Batyreva, B. Nillb

a Eberhard Karls Universität Tübingen
b Freie Universität Berlin, Institut für Mathematik

Abstract: Let $\Delta$ be an $n$-dimensional lattice polytope. The smallest non-negative integer $i$ such that $k\Delta$ contains no interior lattice points for $1\le k\le n-i$ we call the degree of $\Delta$. We consider lattice polytopes of fixed degree d and arbitrary dimension $n$. Our main result is a complete classification of $n$-dimensional lattice polytopes of degree $d=1$. This is a generalization of the classification of lattice polygons $(n=2)$ without interior lattice points due to Arkinstall, Khovanskii, Koelman and Schicho. Our classification shows that the secondary polytope ${\rm Sec}(\Delta)$ of a lattice polytope of degree 1 is always a simple polytope.

Key words and phrases: Lattice polytope, principal $A$-determinant.

MSC: Primary 52B20; Secondary 14M25

Received: May 29, 2006

Language: English

DOI: 10.17323/1609-4514-2007-7-2-195-207



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024