RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2007 Volume 7, Number 2, Pages 209–218 (Mi mmj279)

This article is cited in 64 papers

The Jacobian conjecture is stably equivalent to the Dixmier conjecture

A. Ya. Kanel-Belovab, M. L. Kontsevichc

a Moscow Institute of Open Education
b Hebrew University of Jerusalem
c Institut des Hautes Études Scientifiques

Abstract: The paper is devoted to the proof of equivalence of Jacobian and Dixmier conjectures. We show that $2n$-dimensional Jacobian conjecture implies Dixmier conjecture for $W_n$. The proof uses “antiquantization”: positive characteristics and Poisson brackets on the center of Weyl algebra in characteristic $p$.

Key words and phrases: Poisson brackets, symplectic structure, quantization, polynomial automorphism, Weyl algebra, differential operator, Jacobian conjecture.

MSC: 16S32, 16S80, 14R15

Received: June 30, 2006

Language: English

DOI: 10.17323/1609-4514-2007-7-2-209-218



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024