RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2007 Volume 7, Number 2, Pages 243–255 (Mi mmj281)

This article is cited in 10 papers

On Poincaré series of filtrations on equivariant functions of two variables

A. Campilloa, F. Delgadoa, S. M. Gusein-Zadeb

a University of Valladolid
b M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: Let a finite group $G$ act on the complex plane $(\mathbb C^2,0)$. We consider multi-index filtrations on the spaces of germs of holomorphic functions of two variables equivariant with respect to $1$-dimensional representations of the group $G$ defined by components of the exceptional divisor of a modification of the complex plane $\mathbb C^2$ at the origin or by branches of a $G$-invariant plane curve singularity $(C,0)\subset(\mathbb C^2,0)$. We give formulae for the Poincaré series of these filtrations. In particular, this gives a new method to obtain the Poincaré series of analogous filtrations on the rings of germs of functions on quotient surface singularities.

Key words and phrases: Equivariant functions, filtrations, Poincaré series.

MSC: 14B05, 16W70, 16W22

Received: May 24, 2006

Language: English

DOI: 10.17323/1609-4514-2007-7-2-243-255



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025