RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2007 Volume 7, Number 3, Pages 425–452 (Mi mmj290)

This article is cited in 16 papers

Extremal real algebraic geometry and $\mathcal A$-discriminants

A. Dickensteina, J. Rojasb, K. Rusekb, J. Shihc

a Universidad de Buenos Aires
b Texas A&M University
c University of California, Los Angeles

Abstract: We present a new, far simpler family of counterexamples to Kushnirenko's Conjecture. Along the way, we illustrate a computer-assisted approach to finding sparse polynomial systems with maximally many real roots, thus shedding light on the nature of optimal upper bounds in real fewnomial theory. We use a powerful recent formula for the $\mathcal A$-discriminant, and give new bounds on the topology of certain $\mathcal A$-discriminant varieties. A consequence of the latter result is a new upper bound on the number of topological types of certain real algebraic sets defined by sparse polynomial equations.

Key words and phrases: Sparse polynomial, real root, discriminant, isotopy, maximal, explicit bound.

MSC: Primary 14P25; Secondary 14M25, 34C08

Language: English

DOI: 10.17323/1609-4514-2007-7-3-425-452



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025