RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2008 Volume 8, Number 3, Pages 477–492 (Mi mmj319)

This article is cited in 6 papers

A Denjoy Type Theorem for Commuting Circle Diffeomorphisms with Derivatives Having Different Hölder Differentiability Classes

V. A. Kleptsyna, A. Navasb

a Institute of Mathematical Research of Rennes
b Universidad de Santiago de Chile

Abstract: Let $d\ge2$ be an integer number, and let $f_k$, $k\in\{1,\dots,d\}$, be $C^{1+\tau_k}$ commuting circle diffeomorphisms, with $\tau_k\in]0,1[$ and $\tau_1+\cdots+\tau_d>1$. We prove that if the rotation numbers of the $f_k$'s are independent over the rationals (that is, if the corresponding action of $\mathbf Z^d$ on the circle is free), then they are simultaneously (topologically) conjugate to rotations.

Key words and phrases: denjoy theorem, centralizers, Hölder class of the derivative.

Received: August 14, 2007

Language: English

DOI: 10.17323/1609-4514-2008-8-3-477-492



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025