RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2008 Volume 8, Number 4, Pages 621–646 (Mi mmj323)

This article is cited in 8 papers

On the Geometry of $\operatorname{SL}(2)$-Equivariant Flips

V. Batyrev, F. Haddad

Mathematisches Institut, Universität Tübingen

Abstract: In this paper, we show that any 3-dimensional normal affine quasihomogeneous $\operatorname{SL}(2)$-variety can be described as a categorical quotient of a 4-dimensional affine hypersurface. Moreover, we show that the Cox ring of an arbitrary 3-dimensional normal affine quasihomogeneous $\operatorname{SL}(2)$-variety has a unique defining equation. This allows us to construct $\operatorname{SL}(2)$-equivariant flips by different GIT-quotients of hypersurfaces. Using the theory of spherical varieties, we describe $\operatorname{SL}(2)$-flips by means of 2-dimensional colored cones.

Key words and phrases: geometric invariant theory, categorical quotient, Mori theory.

Received: March 18, 2008

Language: English

DOI: 10.17323/1609-4514-2008-8-4-621-646



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024