RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2008 Volume 8, Number 4, Pages 647–666 (Mi mmj324)

This article is cited in 19 papers

Local Structure of Algebraic Monoids

M. Brion

Institut Fourier, UFR de Mathématiques

Abstract: We describe the local structure of an irreducible algebraic monoid $M$ at an idempotent element $e$. When $e$ is minimal, we show that $M$ is an induced variety over the kernel $MeM$ (a homogeneous space) with fibre the two-sided stabilizer $M_e$ (a connected affine monoid having a zero element and a dense unit group). This yields the irreducibility of stabilizers and centralizers of idempotents when $M$ is normal, and criteria for normality and smoothness of an arbitrary monoid $M$. Also, we show that $M$ is an induced variety over an abelian variety, with fiber a connected affine monoid having a dense unit group.

Key words and phrases: algebraic monoid, idempotent, local structure, induced variety.

Received: October 6, 2007

Language: English

DOI: 10.17323/1609-4514-2008-8-4-647-666



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024